US009172750B2

a2 United States Patent

Bulkowski et al.

US 9,172,750 B2
Oct. 27, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

")

@

(22)

(65)

(63)

(60)

(1)

(52)

CLUSTER-NODE LOAD BALANCING IN A
DISTRIBUTED DATABASE SYSTEM

Applicants: Brian J. Bulkowski, Menlo Park, CA
(US); Venkatachary Srinivasan,
Sunnyvale, CA (US)

Inventors: Brian J. Bulkowski, Menlo Park, CA
(US); Venkatachary Srinivasan,
Sunnyvale, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/511,141

Filed: Oct. 9, 2014
Prior Publication Data
US 2015/0127625 Al May 7, 2015

Related U.S. Application Data

Continuation-in-part of application No. 14/299,566,
filed on Jun. 9, 2014, now Pat. No. 9,002,871, which is
a continuation-in-part of application No. 13/451,551,
filed on Apr. 20, 2012, now Pat. No. 8,799,248.

Provisional application No. 61/478,940, filed on Apr.
26, 2011.

Int. Cl1.

GO6F 17/30 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC ... HO4L 67/10 (2013.01); GOGF 17/30545

(2013.01); GOGF 17/30575 (2013.01); GO6F
17/30598 (2013.01)

(58) Field of Classification Search
CPC ..ccoovvreriennn GO6F 17/30575; GOGF 17/30598,;
GOG6F 17/30634; GOGF 17/30657
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

6,014,669 A * 1/2000 Slaughteretal. 707/610
7,461,130 B1* 12/2008 AbdelAziz et al. 709/208
7,644,087 B2* 1/2010 Barkai etal. 707/770
7,783,610 B2* 82010 Linetal. 707/689
7,933,882 B2* 4/2011 Wildingetal. . .. 707/704
7,937,377 B2* 52011 Wildingetal. 707/704
7,970,797 B2* 6/2011 Wildingetal. 707/802
8,799,248 B2* 82014 Bulkowskietal. 707/703
9,002,871 B2* 4/2015 Bulkowskietal. 707/763
OTHER PUBLICATIONS

Jing Han, Meina Song, and Junde Song, “A Novel Solution of Dis-
tributed Memory NoSQL Database for Cloud Computing”, Com-
puter and Information Science (ICIS), 2011 IEEE/ACIS 10th Inter-
national Conference.*

* cited by examiner
Primary Examiner — Cheryl Lewis

(57) ABSTRACT

In one exemplary aspect, a method of a cluster-node load
balancing system of a distributed database system includes
receiving a request from a cluster with at least one node of a
cluster of the distributed database system. The request
includes a query for an identity of all other nodes known by
the node as well as a metadata of all data maintained by the
node. The identity of all other nodes known by the node as
well as the metadata of all data maintained by the node is
provided to the cluster.

16 Claims, 7 Drawing Sheets

CLIENT
100

ADDRESS LIST
400

QUERY LAYER
202

CLIENT LIBRARIES
402

4

P

NETWORK 102

CLUSTER
108

I
{
: NODE 104 A
{

NODE 104 B

|
NODE 104¢C |

124

INTERCONNECT

U.S. Patent Oct. 27, 2015 Sheet 1 of 7 US 9,172,750 B2

CLIENT CLIENY CLIENT
HOG A R Go o N

IPNETWORK

i

PR U

DIBRMS DDBEMS DDEME o
s A e s e

INTERNAL
INTERCONNECT (B, FIBRE CHANNEL
124

U.S. Patent Oct. 27, 2015 Sheet 2 of 7 US 9,172,750 B2

QUERY LAYER

DISTRIBUTION LAYER

A N
204

DATA STORAGE LAYER

208

DATARASE PLATFORM
QG

Fis. 2

U.S. Patent Oct. 27, 2015 Sheet 3 of 7 US 9,172,750 B2

MERMOBRY
o s 306
PROUESSORKY _

DIEMS

LT

PDEX(ES)

NETWORK ADAPFTER
(DWARE

A

y ' : ‘ : : v
! CRAITNAL T : !

| MASS STORAGE LT

A

NETWORKS)
T

o s

PG 3

U.S. Patent Oct. 27, 2015 Sheet 4 of 7 US 9,172,750 B2

FIGL 44

CLIENT
100

ADDRESS LIST
490

QUERY LAYER

202

CLIENT LIBRARIES
402

)

P

NETWORK 102
: CLUSTER
108

. . W VU U J

INTERCONNECT
124

U.S. Patent Oct. 27, 2015 Sheet 5 of 7

FIG. 48

CLIENT
100

ADDRESS LIST
00

QUERY LAYER

202

CLIENT LIBRARIES
402

A

1
NETWORK 102

¢

US 9,172,750 B2

LUSTER
108

i SN .

[
| |
! i TN SEVEVED TRLA |
z — o s |
l R
b i e o BT e i it v pevos | eeiee oot oowien ot vcen iomevcn | tmers | otmes oot oot oomeoga™ oomen somooon otees oot ooeon

{m

|

INTERCONNECT
124

NODE 104 D
{JOINS CLUSTER
1083

U.S. Patent Oct. 27, 2015 Sheet 6 of 7 US 9,172,750 B2

RECEIVE A REQUEST FROM AT LEAST ONE NODE OF A CLUSTER OF THE DISTRIBUTED
DATABASE SYSTEM, WHEREIN THE REQUEST COMPRISES A QUERY FOR AN IDENTITY OF ALL
OTHER NODES KNOWN BY THE NODE AS WELL AS A METADATA OF ALL DATA MAINTAINED BY
THE NODE
502

PROVIDE THE IDENTITY OF ALL OTHER NODES KNOWN BY THE NODE AS WELL ASTHE
METADATA OF ALL DATA MAINTAINED BY THE NODE TO THE AT LEAST ONE NOBE
204

SOO-***”‘J

FIGURE S

U.S. Patent Oct. 27, 2015 Sheet 7 of 7 US 9,172,750 B2

PROVIDE A FIRST SERVER NODE OF A NODE CLUSTER OF A NOT ONLY STRUCTURED QUERY
LANGUAGE {NOSQL) DISTRIBUTED DATABASE SYSTEM, WHEREIN THE FIRST SERVER NODE
MAINTAINS A NODE ADDRESS LIST OF A SET OF ACTIVE CLUSTER NODES OF THE NODE
CLUSTER
502

Y

PROVIDE A SECOND CLUSTER NODE OF THE NODE CLUSTER OF THE NOSQL DISTRIBUTED
DATABASE SYSTEM, WHEREIN UPON JOINING THE SET OF ACTIVE CLUSTER NODES, THE
SECOND CLUSTER NODE 1S CONFIGURED WITH AN ADDRESS OF THE FIRST SERVER NODE,
WHEREIN THE SECOND CLUSTER NODE REQUESTS THE NODE ADDRESS LIST FROM THE FIRST
SERVER NODE, WHEREIN THE SECOND CLUSTER NODE POLLS EACH INDIVIDUAL NODE OF THE
SET OF ACTIVE CLUSTER NODES TO DETERMINE THE PORTIONS OF THE DATA OF THE NOSQL
DISTRIBUTED DATABASE SYSTEM THAT EACH INDIVIDUAL NODE MAINTAINS
804

&00—"

FIGURE &

US 9,172,750 B2

1
CLUSTER-NODE LOAD BALANCING IN A
DISTRIBUTED DATABASE SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application incorporates by reference the following
U.S. patent applications: U.S. patent application Ser. No.
14/299,566, titled METHOD AND SYSTEM OF MAPRE-
DUCE IMPLEMENTATIONS ON INDEXED DATASETS
IN A DISTRIBUTED DATABASE ENVIRONMENT and
filed on Jun. 9, 2014 U.S. Pat. No. 9,002,871; U.S. patent
application Ser. No. 13/653,411, titled METHOD AND SYS-
TEM OF MAPREDUCE IMPLEMENTATIONS ON
INDEXED filed on Oct. 17, 2012 U.S. Pat. No. 8,775,464,
U.S. application Ser. No. 13/451,551, titled REAL-TIME
TRANSACTION SCHEDULING IN A DISTRIBUTED
DATABASE and filed Apr. 20,2012 U.S. Pat. No. 8,799,248;
and U.S. Provisional Application No. 61/478,940, titled DIS-
TRIBUTED DATABASE SYSTEM WITHA CLUSTER OF
AUTONOMOUS NODES and filed Apr. 26, 2011. These
applications are hereby incorporated by reference in their
entirety.

BACKGROUND

1. Field

This application relates generally to data storage, and more
specifically to a system, article of manufacture and method of
cluster-node load balancing in a distributed database system.

2. Related Art

A distributed database can include a plurality of database
nodes and associated data storage devices. A database node
can manage a data storage device. If the database node goes
offline, access to the data storage device can also go offline.
Accordingly, redundancy of data can be maintained. How-
ever, maintaining data redundancy can have overhead costs
and slow the speed of the database system. Additionally,
offline data may need to be rebuilt (e.g. after the failure of the
database node and subsequent rebalancing operations). This
process can also incur a time and processing cost for the
database system. Therefore, methods and systems of self-
managing nodes of a distributed database cluster with a con-
sensus algorithms can provide improvements to the manage-
ment of distributed databases.

BRIEF SUMMARY OF THE INVENTION

In one aspect, a method of a cluster load balancing system
of a distributed database system includes receiving a request
from a cluster with at least one node of a cluster of the
distributed database system. The request includes a query for
an identity of all other nodes known by the node as well as a
metadata of all data maintained by the node. The identity of
all other nodes known by the node as well as the metadata of
all data maintained by the node is provided to the cluster.

In another aspect, a method of a distributed database sys-
tem includes providing a first server node of a node cluster of
a Not Only SQL (NoSQL) distributed database system. The
first server node maintains anode address list ofa set of active
cluster nodes of the node cluster. A second cluster node of the
node cluster of the NoSQL distributed database system is
provided. Upon joining the node cluster, the second cluster
node is configured with an address of the first server node.
The second cluster node requests the node address list from
the first server node. The second cluster node polls each
individual node of the set of active cluster nodes to determine

10

15

20

25

30

35

40

45

50

55

60

65

2

the portions of the data of the NoSQL distributed database
system that each individual node maintains.

Optionally, the first server node and the second cluster
node communicate using an ASCII-based control protocol.
The first server node communicates the node address list to
the second cluster list after the second cluster node requests
the node address list from the first server node. The node
address list comprises an identity the set of active cluster
nodes of the node cluster and a metadata of all data main-
tained by the first node. Each individual node responds to the
second node with the metadata comprising a distributed hash
table comprising the data maintained by each individual
node. The node cluster is designed without a node master and
without database sharding. The second node creates a data
map of set of active cluster nodes of the node cluster, and
wherein the data map is used to populate the node address list
in the second node.

BRIEF DESCRIPTION OF THE DRAWINGS

The present application can be best understood by refer-
ence to the following description taken in conjunction with
the accompanying figures, in which like parts may be referred
to by like numerals.

FIG. 1 shows, in a block diagram format, a distributed
database system operating in a computer network according
to an example embodiment, according to some embodiments.

FIG. 2 depicts a block diagram of an exemplary database
platform that can be implemented in a DDS such as the
system of FIG. 1, according to some embodiments.

FIG. 3 depicts an exemplary computing system configured
to perform any one of the processes described herein, accord-
ing to some embodiments.

FIGS. 4 A-B depict an example cluster load balancing
system of a DDBS that utilizes the query layer, according to
some embodiments.

FIG. 5 depicts an example process, according to some
embodiments.

FIG. 6 illustrates an example process of a distributed data-
base system, according to some embodiments.

The Figures described above are a representative set, and
are not an exhaustive with respect to embodying the inven-
tion.

DETAILED DESCRIPTION

Disclosed are a system, method, and article of manufacture
for cluster-node load balancing in a distributed database sys-
tem. The following description is presented to enable a person
of'ordinary skill in the art to make and use the various embodi-
ments. Descriptions of specific devices, techniques, and
applications are provided only as examples. Various modifi-
cations to the examples described herein may be readily
apparent to those of ordinary skill in the art, and the general
principles defined herein may be applied to other examples
and applications without departing from the spirit and scope
of the various embodiments.

Reference throughout this specification to “one embodi-
ment,” “an embodiment,” “one example,” or similar language
means that a particular feature, structure, or characteristic
described in connection with the embodiment is included in at
least one embodiment of the present invention. Thus, appear-
ances of the phrases “in one embodiment,” “in an embodi-
ment,” and similar language throughout this specification
may, but do not necessarily, all refer to the same embodiment.

Furthermore, the described features, structures, or charac-
teristics of the invention may be combined in any suitable

US 9,172,750 B2

3

manner in one or more embodiments. In the following
description, numerous specific details are provided, such as
examples of programming, software modules, user selec-
tions, network transactions, database queries, database struc-
tures, hardware modules, hardware circuits, hardware chips,
etc., to provide a thorough understanding of embodiments of
the invention. One skilled in the relevant art can recognize,
however, that the invention may be practiced without one or
more of the specific details, or with other methods, compo-
nents, materials, and so forth. In other instances, well-known
structures, materials, or operations are not shown or described
in detail to avoid obscuring aspects of the invention.

The schematic flow chart diagrams included herein are
generally set forth as logical flow chart diagrams. As such, the
depicted order and labeled steps are indicative of one embodi-
ment of the presented method. Other steps and methods may
be conceived that are equivalent in function, logic, or effect to
one or more steps, or portions thereof, of the illustrated
method. Additionally, the format and symbols employed are
provided to explain the logical steps of the method and are
understood not to limit the scope of the method. Although
various arrow types and line types may be employed in the
flow chart diagrams, and they are understood not to limit the
scope of the corresponding method. Indeed, some arrows or
other connectors may be used to indicate only the logical flow
of the method. For instance, an arrow may indicate a waiting
or monitoring period of unspecified duration between enu-
merated steps of the depicted method. Additionally, the order
in which a particular method occurs may or may not strictly
adhere to the order of the corresponding steps shown.

A. Environment and Architecture

Disclosed are a system, method, and article of manufacture
of a distributed database system. FIG. 1 shows, in a block
diagram format, a distributed database system (DDBS) oper-
ating in a computer network according to an example embodi-
ment, according to some embodiments. A DDBS can typi-
cally be a collection of databases that can be stored at
different computer network sites. Each database may involve
different database management systems and different archi-
tectures that distribute the execution of transactions. A DDBS
can be managed in such a way that it appears to the user as a
centralized database.

FIG. 1 shows database nodes 104 A-C (hereafter ‘nodes’)
that collectively represent a cluster of computers 108 and
associated databases (hereafter ‘cluster’) usable by a DDBS.
The processing and data storage of the DDBS can be parti-
tioned into nodes 104 A-C. The term “cluster” refers to a
collection of one or more networked database nodes that
function as a single system. In one example embodiment,
cluster 108 can be designed without a node master and with-
out database sharding. Database sharding typically involves a
method of horizontal partitioning in a database or search
engine. The architecture of cluster 108 can establish node
equality and use uniform data distribution across cluster 108.
Cluster 108 can also utilize a per node structure in order to
provide continuity of processing cluster data transactions in
the event of a single point of failure within the cluster. Addi-
tionally, cluster 108 can use a data rebalancing mechanism
that can evenly distribute query volume across all nodes in a
manner that rebalancing does not generally affect the behav-
ior of cluster 108. Cluster 108 can also automatically handle
network-partitioning events. These operations are discussed
in further detail below.

In a particular example embodiment, cluster 108 can be
implemented with a shared-nothing architecture. A shared-
nothing architecture is typically characterized by data parti-
tioning and no sharing between the machine components in a

10

15

20

25

30

35

40

45

50

55

60

65

4

cluster of computers, except where communication between
partitions is carried out. The database task carried out by the
cluster is subdivided and each machine carries out processing
steps using its own resources to complete its subdivided por-
tion or portions of the task. Such a cluster architecture can
scale for database workloads and have a limited need for
intra-cluster communication.

Nodes 104 A-C can communicate to clients 100 A-N via IP
network 102. Internet-protocol (IP) network 102 can utilize a
set of communications protocols used for the Internet and
other similar networks. In some embodiments, IP network
102 may also include other means of data communication
such as a local area network (LLAN) that utilizes IEEE 802-
type protocols, a telecommunications data network, or any
combination thereof. Clients 100 A-N can be any application
or process that communicates with nodes 104 A-C via IP
network 102.

Nodes 104 A-C can include one or more central processing
units (CPU), memory resources and permanent data storage
systems. Database nodes 104 A-C can include distributed
database management system (DDBMS) 106 A-C. DDBMS
106 A-C can include a set of computer programs that controls
the creation, maintenance, and the use of distributed database
of cluster 108. DDBMS 106 A-C manages the various data
storage systems 114, 118 and 120 that comprise the distrib-
uted database as well as the data objects on the data storage
systems. The particular example embodiment of FIG. 1
shows DDBMS 106 A-C as a distributed database manager
layer. The DDBMS 106 A-C can include components that are
able to execute database tasks on their respective servers 110
A-C, as well as to carry out functions (described below) that
relate to the operation of the DDBS in cluster 108.

At the application layer of the database nodes 104 A-C can
manage the processing of data transactions. For the sake of
simplicity, not all the components of nodes 104 A-C are
shown. However, it will be appreciated that nodes 104 A-C
can include other components. For example, DDBMS 106
A-C can include systems as lock managers, schedulers, meta-
data managers, policy managers and the like. In some
embodiments, nodes 104 A-C can be self-managing nodes
that can reconfigure the cluster and repartition data within the
cluster without a central administrative entity such as a data-
base administrator (DBA).

Nodes 104 A-C can be linked together via an internal
cluster interconnect 124 such as a Fibre Channel network.
Fibre Channel protocols can use a transport protocol (similar
to TCP used in IP networks) which predominantly transport
small computer system interface (SCSI) commands over a
Fibre Channel network. SCSI commands are typical a set of
standards for physically connecting and transferring data
between computers and peripheral devices. In other embodi-
ments, internal cluster interconnect 124 can use internet small
computer system interface (iSCSI) protocols as well. iSCSI
can carry SCSI commands over (and thus link nodes 104 A-C
via) an [P network.

A database transaction can comprise a unit of work per-
formed within the data storage system (or similar system)
against a database, and is treated in a coherent and reliable
way generally discreet of other data transactions. Generally, a
database transaction has four properties that lead to the con-
sistency and reliability of a distributed database. These are
Atomicity, Consistency, Isolation, and Durability.

Atomicity.

A transaction is treated as a unit of operation. For example,
in the case of a crash, the system should complete the remain-
der of the transaction, or it will undo all the actions pertaining

US 9,172,750 B2

5

to this transaction. Should a transaction fail, changes that
were made to the database by it are undone (i.e. rollback).

Consistency.

This property deals with maintaining consistent data in a
database system. A transaction can transform the database
from one consistent state to another. Consistency falls under
the subject of concurrency control.

Isolation.

Each transaction should carry out its work independently
of any other transaction that may occur at the same time.

Durability.

This property ensures that once a transaction commits, its
results are permanent in the sense that the results exhibit
persistence after a subsequent shutdown or failure of the
database or other critical system. For example, the property of
durability ensures that after a COMMIT of a transaction,
whether it is a system crash or aborts of other transactions, the
results that are already committed are not modified or undone.

Additionally, nodes 104 A-C can also include of one or
more data storage devices 114, 118 and 120 (e.g. a dynamic
random-access memory (DRAM), rotating hard disk, solid-
state drive (SSD), or any combination thereof) or file systems.
Each data storage device 114, 118 and 120 can have a set
ofinetadata that uniquely identifies the data its stores and the
data attributes (e.g. time stamps and the like) to the DDBMS
that manages the particular storage device.

An SSD device can be a data storage device that uses
solid-state memory to store persistent data with the intention
of providing access in the same manner of a block input/
output hard disk drive. DRAM can be a type of random-
access memory that stores each bit of data in a separate
capacitor within an integrated circuit. The capacitor can be
either charged or discharged; these two states are taken to
represent the two values of a bit (0 and 1). A hard-disk drive
can be a non-volatile magnetic data storage device in which
data are digitally recorded by various electronic, magnetic,
optical, or mechanical methods on a surface layer deposited
of one or more planar, round and rotating platters.

FIG. 2 depicts a block diagram of an exemplary database
platform that can be implemented in a DDS such as the
system of FIG. 1, according to some embodiments. Database
platform 200 includes both hardware architecture and soft-
ware frameworks that allow the database systems, such as the
software functionalities of the query layer 202, the distribu-
tion layer 204 and the data storage layer 206, to operate.

The query layer 202 can include the client libraries and the
query mechanisms. Client libraries can include smart client
libraries, including libraries in the PHP, Java, C#, C, C libev-
ent, Python and Ruby on Rails languages. Query layer 202
can include systems and functionalities that support various
query types from clients 100 A-N. Query layer 202 can handle
client communications in various protocol formats such as an
ASClII-based control protocol. This protocol can govern the
client’s server discovery process and the client-server hand-
shake. Query layer 202 can be optimized for key-value que-
ries as well as other query types. Additional information
regarding the query layer 202 is provided below in the
description of FIG. 4.

Distribution layer 204 can include systems and function-
alities that implement and manage a distributed node cluster
architecture (such as those described above with regards to
the system of FIG. 1) that can combine distributed transac-
tions with server distribution. Distribution layer 204 can
implement such operations as inter-cluster communication,
cluster-consensus voting operations, namespace distribution,
distributed transaction management, replication operations
and maintenance operations.

25

35

40

45

6

Data storage layer 206 can include systems and function-
alities that support a variety of data models according to the
various embodiments. In one example embodiment, the data
storage layer 206 can include three functional units (not
shown). In this example embodiment, the data model can
provide application semantics that include named columns
and typed values. A primary key index can be used to perform
data lookup, data retrieval and data iteration operations. The
systems and functionalities of the data storage layer 206 can
also utilize various data storage systems, including DRAM,
rotational disk, flash storage, or any combination thereof (e.g.
data on rotational disk using available DRAM as a cache).
Flash storage can be implemented with an SSD device. Fur-
thermore, in this example embodiment, the data storage layer
206 can implement a schema-free data model that supports
the standard read/write operations and additionally supports
the ability to increment values within the distributed data-
base. The data storage layer 206 can additionally implement
indexes that are stored in DRAM.

Data storage layer 206 can spread the contents of each
namespace across every node in a cluster. This virtual parti-
tioning can be automatic and transparent to a client. If a node
receives a request for a piece of data it does not have locally,
the node can then satisfy the request by creating an internal
proxy for this request. The node can then fetch the data from
the real owner node and then subsequently reply to the client
directly. It should be noted that other aspects of database
platform 200 (e.g. a data transport layer) have not been shown
for the sake of simplicity.

FIG. 3 depicts an exemplary computing system 300 con-
figured to perform any one of the processes described herein.
In this context, computing system 300 may include, for
example, a processor, memory, storage, and 1/O devices (e.g.,
monitor, keyboard, disk drive, Internet connection, etc.).
However, computing system 300 may include circuitry or
other specialized hardware for carrying out some or all
aspects of the processes. In some operational settings, com-
puting system 300 may be configured as a system that
includes one or more units, each of which is configured to
carry out some aspects of the processes either in software,
hardware, or some combination thereof.

FIG. 3 is a block diagram illustrating a computing system
300, according to some embodiments. The computing system
300 is based upon a suitably configured processing system
adapted to implement one or more exemplary embodiments.
Any suitably configured processing system can similarly be
used as the computing system 300 by embodiments such as
servers 110 A-C residing in cluster 108 of FIG. 1, a personal
computer, workstation, a distributed database server, or the
like. The computing system 300 includes a computer 302.
The computer 302 has a processor(s) 304 that is connected to
amemory 306, mass storage interface 308, terminal interface
310, and network adapter hardware 312. A system bus 314
interconnects these system components. The mass storage
interface 308 is used to connect mass storage devices, such as
data storage device 316 (e.g. data storage systems 114, 118
and 120 and data storage 708 described infra), to the com-
puter 302. Examples of data storage 316 can include those
examples discussed supra (rotating hard disk systems, SSD
flash systems, DRAM, and the like), as well others such as
optical drives. Data storage 316 may be used to store data to
and read data from a computer-readable medium or storage
product.

Memory 306, in one embodiment, includes a DDBMS,
such as DDBMS 106 A-C. In some example embodiments,
memory 306 can also include one or more indexes. Although
illustrated as concurrently resident in the memory 306, it is

US 9,172,750 B2

7

clear that respective components of the memory 306 are not
required to be completely resident in the memory 306 at all
times or even at the same time. In one embodiment, the
computer 302 utilizes conventional virtual addressing
mechanisms to allow programs to behave as if they have
access to a large, single storage entity, referred to herein as a
computer system memory, instead of access to multiple,
smaller storage entities such as the memory 306 and data
storage device 316. In some embodiments, additional
memory devices (such as a DRAM cache) can be coupled
with computer 302 as well.

Although only one CPU 304 is illustrated for computer
302, computer systems with multiple CPUs can be used
equally effectively. Some embodiments can further incorpo-
rate interfaces that each includes separate, fully programmed
microprocessors that are used to off-load processing from the
CPU 304. Terminal interface 310 is used to directly connect
one or more terminals 320 to computer 302 to provide a user
interface to the computer 302. These terminals 320, which are
able to be non-intelligent or fully programmable worksta-
tions, are used to allow system administrators and users to
communicate with computer 302. The terminal 320 can also
include other user interface and peripheral devices that are
connected to computer 302 and controlled by terminal inter-
face hardware included in the terminal I/F 310 that includes
video adapters and interfaces for keyboards, pointing devices,
and the like.

An operating system (not shown) included in the memory
is a suitable multitasking operating system such as the Linux,
UNIX, Windows XP, and Windows Server operating system.
Embodiments are able to use any other suitable operating
system. Some embodiments utilize architectures, such as an
object oriented framework mechanism, that allows instruc-
tions of the components of operating system to be executed on
any processor located within computer 302. The network
adapter hardware 312 is used to provide an interface to a
network 322. Some embodiments are able to be adapted to
work with any data communications connections including
present day analog and/or digital techniques or via a future
networking mechanism.

Although the exemplary embodiments are described in the
context of a fully functional computer system, those skilled in
the art will appreciate that embodiments are capable of being
distributed as a program product via CD or DVD, e.g., a CD
ROM, or other form of recordable media, or via any type of
electronic transmission mechanism. At least some values
based on the results of the above-described processes can be
saved for subsequent use. Additionally, a computer-readable
medium can be used to store (e.g., tangibly embody) one or
more computer programs for performing any one of the
above-described processes by means of a computer. The com-
puter program may be written, for example, in a general-
purpose programming language (e.g., Pascal, C, C++, and
Java) or some specialized application-specific language.

Although the present embodiments have been described
with reference to specific example embodiments, various
modifications and changes can be made to these embodi-
ments without departing from the broader spirit and scope of
the various embodiments. For example, the various devices,
modules, etc. described herein can be enabled and operated
using hardware circuitry, firmware, software or any combi-
nation of hardware, firmware, and software (e.g., embodied in
a machine-readable medium).

In addition, it will be appreciated that the various opera-
tions, processes, and methods disclosed herein can be embod-
ied in a machine-readable medium and/or a machine acces-
sible medium compatible with a data processing system (e.g.,

30

40

45

50

8

a computer system), and can be performed in any order (e.g.,
including using means for achieving the various operations).
Accordingly, the specification and drawings are to be
regarded in an illustrative rather than a restrictive sense. In
some embodiments, the machine-readable medium can be a
non-transitory form of machine-readable medium.

B. Operation

FIGS. 4 A-B depicts an example cluster load balancing
system of a DDBS that utilizes the query layer 202 of FIG. 2
supra, according to some embodiments. Client 100 can com-
municate to nodes 104 A-C using an ASCII-based control
protocol. The control protocol can govern such operations as
the client’s server discovery process and the client server
handshake. Upon startup of cluster 108, client 100 can be
configured with the address of at least one of nodes 104 A-C.
Once client 100 has secured an address, client 100 can then
request the addressed node for the remaining node addresses.
In this way, client 100 can create a node address list 400.
Address list 400 can be periodically maintained and updated.
Additionally, client 100 can poll each individual node to
determine the portions of the data of the DDBS that the
particular node maintains. Nodes 104 A-C then respond with
metadata (e.g. a distributed hash table (DHT)) about the data
maintained by the particular node. Client 100 and nodes 104
A-C can use a client-side metadata-communication protocol
to communicate metadata queries and responses between
each other. Use of the metadata-communication protocol
allows for client/server data exchanges to proceed in a sub-
stantially concurrent manner with the operations of FIGS. 4
A-B. In this way, client 100 can then create and maintain a
data map of nodes 104 A-C. The data map can be used to
populate address list 400 and/or client libraries 402 (see
below).

Client libraries 402 can include the source code in a com-
puter programming language such as Java, PHP, C#, C, C
libevent, Python and Ruby on Rails. Client libraries 402 can
include both blocking and event-oriented interfaces. Client
applications can link against the Client libraries 402. In this
way, client libraries 402 can expose a common set of inter-
faces for data insertion, retrieval, modification, and deletion.
Client libraries 402 can also connect a client application to
cluster 108. Client libraries 402 can implement a discovery
protocol and route each query to nodes 104 A-C (or, in some
cases, determine and route the query to an optimal node).
Client libraries 402 can include information as to where indi-
vidual data elements are stored. Client libraries 402 dynami-
cally tracks the size and state of cluster 108, so no reconfigu-
ration is necessary when cluster nodes are added or removed.
Additionally, client libraries 402 can automatically retry
transactions safely in failure cases, or if desired, can apply
transactions only once. Client libraries 402 can include
mechanisms for retrying writes and using a client-generated
unique persistent transaction identifier.

In one example embodiment, client 100 can internally fol-
low the cluster with the following operation. Client 100 can
request that a node (such asnode 104 A) generate a list of peer
(‘friend’) nodes (e.g. 104 B and C) in cluster 108 and deter-
mine which data is maintained by each peer node. Nodes 104
A-C can communicate this information via internal intercon-
nect 124. Thus, node 104 A would return a list of nodes 104 B
and C and their respective concomitant data. This information
can then be provided to client 100. Client 100 can then iterate
this operation with each peer node provided in a list from
node 104 (i.e. repeat the process with node 104 B and then
104 C). In this way, client 100 can discover any peer nodes
that may not be known to another node. For example, a node
104 D (shown in FIG. 4B) may be included in the cluster.

US 9,172,750 B2

9

Node 104 A may not be aware of this node due to some error
in cluster reconfiguration. However, node 104 B may be
aware of node 104 D. As a result, as client 100 iterates the
operation, it will become aware of node 104 D and its con-
comitant data. Thus, client 100 can develop a complete list of
all the nodes in cluster 108. The list can include metadata that
provides the location of the data in cluster 108 as well. The list
can be included in client libraries 402. The list of nodes 104
A-C and 104 D can be included in address list 400.

FIG. 5 depicts an example process 500, according to some
embodiments. Step 502 includes receiving a request from at
least one node of a cluster of the distributed database system,
wherein the request comprises a query for an identity of all
other nodes known by the node as well as a metadata of all
data maintained by the node. Step 504 includes providing the
identity of all other nodes known by the node as well as the
metadata of all data maintained by the node to the at least one
node.

FIG. 6 illustrates an example process 600 of a distributed
database system according to some embodiments. Step 602
includes providing a first server node of a node cluster of a
Not Only Structured Query Language (NoSQL) distributed
database system, wherein the first server node maintains a
node address list of a set of active cluster nodes of the node
cluster. Step 604 includes providing a second cluster node of
the node cluster of the NoSQL distributed database system,
wherein upon joining the set of active cluster nodes, the
second cluster node is configured with an address of the first
server node, wherein the second cluster node requests the
node address list from the first server node, wherein the sec-
ond cluster node polls each individual node of the set of active
cluster nodes to determine the portions of the data of the
NoSQL distributed database system that each individual node
maintains.

CONCLUSION

Although the present embodiments have been described
with reference to specific example embodiments, various
modifications and changes can be made to these embodi-
ments without departing from the broader spirit and scope of
the various embodiments. For example, the various devices,
modules, etc. described herein can be enabled and operated
using hardware circuitry, firmware, software or any combi-
nation of hardware, firmware, and software (e.g., embodied in
a machine-readable medium).

In addition, it may be appreciated that the various opera-
tions, processes, and methods disclosed herein can be embod-
ied in a machine-readable medium and/or a machine acces-
sible medium compatible with a data processing system (e.g.,
a computer system), and can be performed in any order (e.g.,
including using means for achieving the various operations).
Accordingly, the specification and drawings are to be
regarded in an illustrative rather than a restrictive sense. In
some embodiments, the machine-readable medium can be a
non-transitory form of machine-readable medium.

What is claimed as new and desired to be protected by
Letters Patent of the United States is:

1. A database node of a node cluster of a distributed data-

base system comprising:

a query layer, implemented with at least one processor,
dynamically tracking a state of the node cluster, wherein
the query layer comprises a set of information of a loca-
tion of individual data elements stored in the distributed
database system, and wherein the query layer receives a
request from a cluster node of the distributed database

10

15

20

25

30

35

40

45

50

55

60

65

10

system and responds with the set of information of a
location of individual data elements stored in the distrib-
uted database system;

a distribution layer managing a set of distributed transac-
tions of a distributed node cluster architecture of the
distributed database in the database node; and

a data storage layer managing data storage and data
retrieval in the database node distrusted database sys-
tem.

2. The node cluster of claim 1, wherein the query layer

dynamically tracks the size and state of the node cluster.

3. The node cluster of claim 2, wherein a database recon-
figuration operation is not performed when one or more clus-
ter nodes added or removed to the node cluster.

4. The node cluster of claim 2, wherein the set of client
libraries automatically retry transactions safely when a fail-
ure case is detected.

5. The node cluster of claim 4, wherein the set of client
libraries retries a write operating using a client-generated
unique persistent transaction identifier.

6. The node cluster of claim 5, wherein the query layer
generates a list of peer nodes to a cluster node when the query
layer receives a request from the cluster node to generate a list
of peer nodes in the node cluster.

7. The node cluster of claim 6, wherein the query layer
determines which data is maintained by each peer node in the
node cluster.

8. The node cluster of claim 7, wherein the cluster node
iteratively requests the list of peer nodes to the cluster node
from the query layer of each of the other peer nodes provided
in the list from query layer.

9. The node cluster of claim 8, wherein the set of informa-
tion comprises a metadata that provides the location of the
data in node cluster.

10. A method of a distributed database system comprising:

providing, implemented with at least one processor, a first
server node of a node cluster of a Not Only Structured
Query Language (NoSQL) distributed database system,
wherein the first server node maintains a node address
list of a set of active cluster nodes of the node cluster;

providing a second cluster node of the node cluster of the
NoSQL distributed database system, wherein upon join-
ing the set of active cluster nodes, the second cluster
node is configured with all address of the first server
node, wherein the second cluster node requests the node
address list from the first server node, wherein the sec-
ond cluster node polls each individual node of the set of
active cluster nodes to determine the portions of the data
of the NoSQL distributed database system that each
individual node maintains.

11. The method of claim 10, wherein the first server node
and the second cluster node communicate using an ASCII-
based control protocol.

12. The method of claim 11, wherein the first server node
communicates the node address list to the second cluster list
after the second cluster node requests the node address list
from the first server node.

13. The method of claim 12, wherein the node address list
comprises an identity the set of active cluster nodes of the
node cluster and a metadata of all data maintained by the first
node.

14. The method of claim 13, wherein each individual node
responds to the second node with the metadata comprising a
distributed hash table comprising the data maintained by each
individual node.

US 9,172,750 B2
11

15. The method of claim 14, wherein the node cluster is
designed without a node master and without database shard-
ing.

16. The method of claim 15, wherein the second node
creates a data map of set of active cluster nodes of the node 5
cluster, and wherein the data map is used to populate the node
address list in the second node.

#* #* #* #* #*

12

